MOON LAB
Moon lab pursues development of novel therapeutics for breast, ovary, and prostate cancer

Regarding Autophagy thesis

홍사덕 0 1412
Date: 2021.10.12

1) Autophagy inhibition medicated cell death

Title: Inhibition of macroautophagy triggers apoptosis

Mol Cell Biol. 2005 Feb;25(3):1025-40. doi: 10.1128/MCB.25.3.1025-1040.2005.

Abstract

Mammalian cells were observed to die under conditions in which nutrients were depleted and, simultaneously, macroautophagy was inhibited either genetically (by a small interfering RNA targeting Atg5, Atg6/Beclin 1-1, Atg10, or Atg12) or pharmacologically (by 3-methyladenine, hydroxychloroquine, bafilomycin A1, or monensin). Cell death occurred through apoptosis (type 1 cell death), since it was reduced by stabilization of mitochondrial membranes (with Bcl-2 or vMIA, a cytomegalovirus-derived gene) or by caspase inhibition. Under conditions in which the fusion between lysosomes and autophagosomes was inhibited, the formation of autophagic vacuoles was enhanced at a preapoptotic stage, as indicated by accumulation of LC3-II protein, ultrastructural studies, and an increase in the acidic vacuolar compartment. Cells exhibiting a morphology reminiscent of (autophagic) type 2 cell death, however, recovered, and only cells with a disrupted mitochondrial transmembrane potential were beyond the point of no return and inexorably died even under optimal culture conditions. All together, these data indicate that autophagy may be cytoprotective, at least under conditions of nutrient depletion, and point to an important cross talk between type 1 and type 2 cell death pathways.

2) Autophagy medicated cell death

Title: Targeting surface nucleolin induces autophagy-dependent cell death in pancreatic cancer via AMPK activation

Oncogene. 2019 Mar;38(11):1832-1844. doi: 10.1038/s41388-018-0556-x. Epub 2018 Oct 24.

Abstract

Pancreatic cancer remains one of the deadliest human cancers despite current advances in conventional therapeutics including surgery and adjuvant therapies. Here, we showed that LZ1, a peptide derived from a snake venom cathelicidin, significantly inhibited growth of pancreatic cancer cells by inducing autophagy-dependent cell death both in vitro and in vivo. The LZ1-induced cell death was blocked by pharmacological or genetic inhibition of autophagy. In orthotopic model of pancreatic cancer, systemic administration of LZ1 (1-4 mg/kg) exhibited remarkable antitumor efficacy, significantly prolonged mice survival, and showed negligible adverse effects by comparison with gemcitabine (20 mg/kg). Mechanistic studies revealed that LZ1 acts through binding to nucleolin, whose expression on cell surface is frequently increased in pancreatic cancer cells. LZ1 binding triggers degradation of surface-expressed nucleolin. This leads to activation of 5'-AMP kinase which results in suppression of mTORC1 activity and induction of autophagic flux. These data suggest that LZ1, targeting nucleolin-AMPK-autophagy axis, is a promising lead for the development of therapeutic agents against pancreatic cancer.
0 Comments